Железо (Fe) | Karate-krs.ru

Железо (Fe)

95 % всей металлической продукции.
Чистое Fe получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом. Достаточно чистое железо получают прямым восстановлением непосредственно из рудных концентратов (минуя доменную печь), водородом, природным газом или углем при относительно низких температураx (губчатое Fe, железный порошок, металлизованные окатыши).

Энциклопедический словарь по металлургии. — М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое «Железо (Fe)» в других словарях:

Железо — получить на Академике рабочий купон на скидку Ашан или выгодно железо купить с бесплатной доставкой на распродаже в Ашан

ЖЕЛЕЗО — ср. зале(и)зо южн., зап. металл, крушец, выплавляемый из руды в виде чугуна, и выковываемый из сего последнего под кричным молотом. В соединении с углеродом, оно образует сталь. В продажу железо идет в виде: полосового или сортового; первое прямо … Толковый словарь Даля

ЖЕЛЕЗО — ЖЕЛЕЗО, Ferrum (Fe), тяжелый металл, относящийся к VIII группе периодической системы Менделеева. Ат. в. 55,84(0=16), при чем известны два изотопа с ат. в. в 56 и 54. Чистое Ж. обладает серебристо белым цветом; уд. в. 7,88; оно мягче и более… … Большая медицинская энциклопедия

железо — ферро; феррум, крица; аппаратное обеспечение Словарь русских синонимов. железо сущ., кол во синонимов: 18 • автомобиль (369) • … Словарь синонимов

ЖЕЛЕЗО — см. ЖЕЛЕЗО (Fe). В поверхностных водах содержание железа колеблется в широких пределах. В подземных водоисточниках и водах болот его концентрация достигает десятков мг/л. Резкое повышение железа в водоемах происходит при загрязнении их сточными… … Болезни рыб: Справочник

железо — ЖЕЛЕЗО, а, с. 1. Надежный человек. Серега он железо, после трех бутылок приползет. 2. Металлический рок. 3. Мелочь, металлические деньги. 4. Приспособления для занятий атлетизмом (гири, гантели и т. п.). Заниматься железом. Я бросил железо,… … Словарь русского арго

ЖЕЛЕЗО — (символ Fe), распространенный ПЕРЕХОДНОЙ ЭЛЕМЕНТ, известный с древних времен. К основным железосодержащим рудам относятся: ГЕМАТИТ (Fе2О3), МАГНЕТИТ (Fe3O4) и КОЛЧЕДАН (FeS2). Выплавляют в ДОМЕННЫХ ПЕЧАХ, восстанавливая оксиды угарным газом из… … Научно-технический энциклопедический словарь

ЖЕЛЕЗО — ЖЕЛЕЗО, железа, мн. (только устар. поэт.) железы, ср. 1. только ед. Самый распространенный в природе тяжелый металл серебристого цвета, с примесью разных количеств углерода, образующий сталь и чугун. Изделия из железа. || Химический элемент из… … Толковый словарь Ушакова

ЖЕЛЕЗО — (Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847; металл, tпл 1535шC. Содержание в земной коре 4,65% по массе. Железо входит в состав гемоглобина. Его используют для выплавки чугуна и… … Современная энциклопедия

ЖЕЛЕЗО — (лат. Ferrum) Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Блестящий серебристо белый металл. Образует полиморфные модификации; при обычной температуре устойчиво ? Fe (кристаллическая решетка… … Большой Энциклопедический словарь

Железо — (евр. барзел; греч. сидерос): 1) в Быт 4:22 говорится о Тувалкаине, к рый был ковачом всех орудий из меди и железа . При первых попытках обработки этого металла использовалось железо метеоритного происхождения, однако оно с трудом поддавалось… … Библейская энциклопедия Брокгауза

Железо — Fe (a. iron; н. Eisen; ф. fer; и. hierro), хим. элемент VIII группы периодич. системы элементов Mенделеева, ат.н. 26, ат. м. 55,847. Природное Ж. состоит из 4 стабильных изотопов: 54Fe (5,84%), 56Fe (91,68%), 57Fe (2,17%) и 58Fe (0,31%).… … Геологическая энциклопедия

Соединения железа:

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия.

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа.

Электронная конфигурация атома железа — 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe2O3, Fe3O4):
    3Fe + 2O2 = Fe3O4;
  • окисление железа при низких температурах:
    4Fe + 3O2 = 2Fe2O3;
  • реагирует с водяным паром:
    3Fe + 4H2O = Fe3O4 + 4H2;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl2 = 2FeCl3;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe3C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl2 = FeCl2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl2 + H2;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N2, N2O, NO2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун — это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь.

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи.

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C — 3Fe2O3 + CO = 2Fe3O4 + CO2;
    • 600°C — Fe3O4 + CO = 3FeO + CO2;
    • 800°C — FeO + CO = Fe + CO2;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO2 + 2C = Si + 2CO;
    • Mn2O3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO3 = CaO + CO2;
    • CaO + SiO2 = CaSiO3;
    • CaO + Al2O3 = Ca(AlO2)2.
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки — чугун и шлаки, накапливающиеся в самом низу печи — горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O2 = CO2;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку — выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Железо – химический элемент

1. Положение железа в периодической таблице химических элементов и строение его атома

Железо — это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar ( Fe ) = 56; состав атома: 26-протонов; 30 – нейтронов; 26 – электронов.

Схема строения атома:

Электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

Металл средней активности, восстановитель:

Fe 0 -2 e — → Fe +2 , окисляется восстановитель

Fe 0 -3 e — → Fe +3 , окисляется восстановитель

Основные степени окисления: +2, +3

2. Распространённость железа

Железо – один из самых распространенных элементов в природе . В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются :

магнетит (магнитный железняк) – Fe3O4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:

гематит (железный блеск, кровавик)– Fe2O3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе:

лимонит (бурый железняк) – Fe2O3*nH2O содержит до 60% железа, месторождения встречаются в Крыму:

пирит (серный колчедан, железный колчедан, кошачье золото) – FeS2 содержит примерно 47% железа, месторождения встречаются на Урале.

3. Роль железа в жизни человека и растений

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO2.

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

Восстановлением из оксидов углём или оксидом углерода (II), а также водородом:

6. Химические свойства железа

Как элемент побочной подгруппы железо может проявлять несколько степеней окисления. Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления +2 и +3. Таким образом, можно говорить, что у железа имеется два ряда соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

2) Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II,III) — вещество чёрного цвета:

3) При высокой температуре (700–900°C) железо реагирует с парами воды:

4) Железо реагирует с неметаллами при нагревании:

5) Железо легко растворяется в соляной и разбавленной серной кислотах при обычных условиях:

6) В концентрированных кислотах – окислителях железо растворяется только при нагревании

На холоде концентрированные азотная и серная кислоты пассивируют железо!

7) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

8) Качественные реакции на

Основная часть получаемого в мире железа используется для получения чугуна и стали — сплавов железа с углеродом и другими металлами. Чугуны содержат около 4% углерода. Стали содержат углерода менее 1,4%.

Чугуны необходимы для производства различных отли­вок — станин тяжелых машин и т.п.

Стали используются для изготовления машин, различных строительных материалов, балок, листов, проката, рельсов, инструмента и множества других изделий. Для производства различных сортов сталей применяют так называемые легиру­ющие добавки, которыми служат различные металлы: М n , С r , Мо и другие, улучшающие качество стали.

Задания для закрепления

№1. Составьте уравнения реакций получения железа из его оксидов Fe2O3 и Fe3O4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите превращения по схеме:
Fe2O3 -> Fe — +H2O, t -> X — +CO, t -> Y — +HCl -> Z
Назовите продукты X, Y, Z?

Физические и химические свойства железа

А томный номер — 26. Символ – Fe (лат. «ferrum»). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Физические свойства железа

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – [Ar]3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3». Температура плавления железа – 1539С. Железо образует две кристаллические модификации: α- и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая – кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 и от 1394С до температуры плавления. Между 912 и 1394С устойчиво γ-железо.

Механические свойства железа зависят от его чистоты – содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способностью растворять в себе многие элементы.

Химические свойства железа

Во влажном воздухе железо быстро ржавеет, т.е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа (III):

При недостатке кислорода или при затрудненном доступе образуется смешанный оксид (II, III) Fe3O4:

Железо растворяется в соляной кислоте любой концентрации:

Аналогично происходит растворение в разбавленной серной кислоте:

В концентрированных растворах серной кислоты железо окисляется до железа (III):

Однако, в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит. В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

При высоких концентрациях азотной кислоты растворение замедляется и железо становится пассивным.

Как и другие металлы железо вступает в реакции с простыми веществами. Реакции взаимодействия железа с галогенами (вне зависимости от типа галогена) протекают при нагревании. Взаимодействие железа с бромом протекает при повышенном давлении паров последнего:

Взаимодействие железа с серой (порошок), азотом и фосфором также происходит при нагревании:

Железо способно реагировать с такими неметаллами, как углерод и кремний:

Среди реакций взаимодействия железа со сложными веществами особую роль играют следующие реакции — железо способно восстанавливать металлы, стоящие в ряду активности правее него, из растворов солей (1), восстанавливать соединения железа (III) (2):

Железо, при повышенном давлении, реагирует с несолеобразующим оксидом – СО с образованием веществ сложного состава – карбонилов — Fe(CO)5, Fe2(CO)9 и Fe3(CO)12.

Железо при отсутствии примесей устойчиво в воде и в разбавленных растворах щелочей.

Получение железа

Основной способ получения железа – из железной руды (гематит, магнетит) или электролиз растворов его солей (в этом случае получают «чистое» железо, т.е. железо без примесей).

Примеры решения задач

Задание Железная окалина Fe3O4 массой 10 г была сначала обработана 150 мл раствора соляной кислоты (плотность 1,1 г/мл) с массовой долей хлороводорода 20%, а затем в полученный раствор добавили избыток железа. Определите состав раствора (в % по массе).
Решение Запишем уравнения реакций согласно условию задачи:

Зная плотность и объем раствора соляной кислоты, можно найти его массу:

msol(HCl) = 150×1,1 = 165 г.

Рассчитаем массу хлороводорода:

m(HCl) = 165×20%/100% = 33 г.

Молярная масса (масса одного моль) соляной кислоты, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Найдем количество вещества хлороводорода:

v(HCl) = 33/36,5 = 0,904 моль.

Молярная масса (масса одного моль) окалины, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 232 г/моль. Найдем количество вещества окалины:

Согласно уравнению 1, v(HCl): v(Fe3O4) = 1:8, следовательно, v(HCl) = 8 v(Fe3O4) = 0,344 моль. Тогда, количество вещества хлородорода, рассчитанное по уравнению (0,344 моль) будет меньше, чем указанное в условии задачи (0,904 моль). Следовательно, соляная кислота находится в избытке и будет протекать еще одна реакция:

Определим количество вещества хлоридов железа, образующихся в результате первой реакции (индексами обозначим конкретную реакцию):

Определим количество хлороводорода, которое не прореагировало в реакции 1 и количество вещества хлорида железа (II), образовавшееся в ходе реакции 3:

vrem(HCl) = v(HCl) – v1(HCl) = 0,904 – 0,344 = 0,56 моль;

Определим количество вещества FeCl2, образовавшегося в ходе реакции 2, общее количество вещества FeCl2 и его массу:

Определим количество вещества и массу железа, вступившего в реакции 2 и 3:

m(Fe) = vsum(Fe) ×M(Fe) = 0,323 ×56 = 18,088 г.

Вычислим количество вещества и массу водорода, выделившегося в реакции 3:

Определяем массу полученного раствора m’sol и массовую долю FeCl2 в нём:

m’sol = 165 + 10 + 18,088 – 0,56 = 192,528 г;

Ответ Массовая доля хлорида железа (II) в растворе — 29,82%.
Задание Какие процессу будут протекать при погружении цинковой пластинки в раствор хлорида железа (II)? Как изменится масса хлорида железа (II) в растворе?
Решение Хлорид железа (II) в растворе подвергается гидролизу:

FeCl2 + HOH ↔FeOHCl +HCl;

Fe 2+ + HOH ↔ FeOH + + H + .

Цинк будет взаимодействовать с кислотой:

Zn + 2H + = Zn 2+ + H2↑.

Так как цинк более активный металл, чем железо (расположен в ряду напряжений левее железа), то он вытесняет железо из соли:

Zn + Fe 2+ = Zn 2+ + Fe.

В результате, масса хлорида железа (II) в растворе уменьшится.

«Соединения Fe+2 и Fe+3». 9-й класс

Разделы: Химия

Класс: 9

— образовательная: познакомить учащихся с природными соединениями железа, рассмотреть важнейшие соединения железа (+2) и (+3), их свойства, ознакомить с качественными реакциями на ионы железа (+2) и (+3), показать народнохозяйственное значение соединений железа;

— развивающая: развитие речи, памяти, логического мышления, умений совместной деятельности; развитие и закрепление умений и навыков работать с лабораторным оборудованием;

— воспитательная: формирование мировоззрения, навыков сотрудничества, преемственности знаний, осуществление межпредметных связей, воспитание экологической грамотности, разумного отношения к природе (слайд 2).

Оборудование и реактивы:

образцы природных соединений железа (магнитный железняк, красный железняк, бурый железняк, железный колчедан); растворы хлорида железа (II) и (III), растворы красной кровяной соли и жёлтой кровяной соли, раствор роданида калия, раствор щёлочи; соли: железный купорос, хлорид железа (III), сульфат железа (III), необходимая химическая посуда.

Тип урока: комбинированный.

I. Организационный момент.

II. Актуализация знаний.

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

III. Изучение нового материала.

Нахождение железа в природе

Железо (5%) – второй по распространённости металл в земной коре, а в природе занимает 4 место. В природе встречается в виде оксидов и сульфидов:

Fe3O4 – магнитный железняк (магнетит);

Fe2O3 – красный железняк (гематит);

(Врач и алхимик Теофаст Парацельс много путешествовал и в 1530г из России привёз в свою лабораторию в г. Базеле кусок вишнёво – красного минерала – “кровавика”. Минерал действительно оставлял “кровавый” след – красную черту на пергаменте или белом камне. Помощник Парацельса, невежественный монах, решил, что минерал из России – застывшая кровь дьявола. Готовя составные части лекарств прокаливанием солей, полученных из “русского минерала”, монах всякий раз получал порошок красного цвета. Сиреневые кристаллы сульфата и нитрата железа (III), жёлтый хлорид железа (III) или почти белый карбонат железа (II) – все они при нагревании в токе воздуха превращались в “кровавик”. Бросив работу, монах стал повсюду рассказывать, что Парацельс связан с дьяволом. В адрес знаменитого врача посыпались угрозы, и ночью ему пришлось тайно покинуть Базель. Утром толпа горожан разгромила и сожгла его дом).

“Кровавик” — это минерал гематит Fe2O3. Соли железа при прокаливании разлагаются с выделением этого оксида красного цвета.)

FeS2 – железный колчедан (пирит).

Помимо железа в состав этих минералов входят другие элементы. Природное химически чистое железо бывает только метеоритного происхождения (самый большой метеорит найден в 1920 г. в Юго – Западной Африке, вес 60 т., “Гоба”) (демонстрация коллекции минералов) (Cлайд 3).

Железо образует несколько рядов соединений, чтобы узнать какие мы должны с вами вспомнить, какова особенность строения атома железа и какие степени окисления характерны для железа?

Fe +26 2е, 8е, 14е, 2е

(Fe – элемент 7 группы побочной подгруппы, 4 периода (большой). Заполняется не последний, а предпоследний, 3-й от ядра энергетический уровень, где максимальное число электронов 18, у железа здесь 14 электронов. Железо восстановитель, как и другие металлы, однако в отличие от ранее изученных металлов, атомы железа при окислении отдают не только электроны последнего уровня, приобретая степень окисления +2, но способны к отдаче 1 электрона с предпоследнего энергетического уровня, принимая при этом степень окисления +3. Для железа характерны две основные степени окисления +2 и +3).

Проявляя степени окисления +2 и +3 железо образует 2 ряда соединений.

Соединения железа (+2).

Соединения железа (+2): FeO (оксид железа(II) и Fe(OH)2 (гидроксид железа(II). Имеют ярко выраженный основный характер. Получают их косвенно. Рассмотрим генетический ряд Fe +2:

Соединения железа (+3).

Соединения железа (+3): Fe2О3 (оксид железа(III)) и Fe(OH)3 (гидроксид железа(III)). Имеют слабо выраженные амфотерные свойства. Получают их косвенно. Рассмотрим генетический ряд Fe +3:

Катионы железа (+2) легко окисляются кислородом воздуха или другими окислителями до катионов железа (+3). Поэтому белый осадок Fe(OH)2 (гидроксид железа(II) на воздухе сначала приобретает зелёную окраску, а затем становится бурым, превращаясь в Fe(OH)3 (гидроксид железа(III) (демонстрационный опыт

)

Соли железа (+2) и (+3).

Железо образует 2 ряда солей Fe +2 и Fe +3 . Для распознавания соединений железа (+2) и (+3) проводят качественные реакции на данные ионы (качественные реакции – это реакции с помощью которых распознают различные вещества, они сопровождаются ярким внешним эффектом).

Качественные реакции на Fe +2 .

Реактивом служит красная кровяная соль.

Качественные реакции на Fe +3.

Реактивом служит жёлтая кровяная соль.

Также для обнаружения ионов железа(III) используют взаимодействие солей железа(III) с роданидом калия или аммония, в результате чего раствор приобретает интенсивно-красное окрашивание.

Техника безопасности: необходимо брать вещества в количествах указанных учителем; при попадании данных химических реактивов на кожу или одежду необходимо смыть реактивы избытком воды; если что-нибудь попало в глаза – промыть водой в течение 10-15 минут.

(просмотр диска; демонстрация образцов солей; опыты учащихся) (Cлайд 4, 5).

Применение соединений железа

Железо выполняет функции кроветворных органов, входит в состав гемоглобина, других сложных белковых животных организмов. В виде чугуна и стали железо находит широкое применение в народном хозяйстве. Из солей железа наибольшее техническое значение имеют сульфаты и хлориды.

FeSO4*7H2O – железный купорос используется для борьбы с вредителями растений, для приготовления минеральных красок и т.д.;

FeCl3 – используется как протрава при крашении тканей и в качестве катализатора в органическом синтезе;

Fe2(SO4)3*9H2O – применяют для очистки воды, в виде квасцов в медицине.

(просмотр диска; демонстрация образцов солей)

На уроке мы с вами рассмотрели соединения железа (+2) и (+3). Познакомились с нахождением железа в природе: минералы магнетит, гематит, лимонит, пирит. Изучили соединения железа (+2) ( FeO (оксид железа(II) и Fe(OH)2 (гидроксид железа(II) и их свойства; соединения железа (+3) (Fe2О3 (оксид железа(III) и Fe(OH)3 (гидроксид железа(III), их свойства. Рассмотрели лёгкость окисления Fe +2 в Fe +3 кислородом воздуха. Узнали, что железо образует 2 ряда соединений:

Fe +2 : реактивом служит красная кровяная соль, образуется тёмно-синий осадок (турнбулева синь);

Fe +3 : реактивом служит

1) жёлтая кровяная соль, образуется тёмно-синее окрашивание (берлинская лазурь);

2) роданид калия или аммония, образуется интенсивно-красное окрашивание.

Рассмотрели применение соединений железа: в металлургии, медицине, при очистке воды, при окраске тканей, для борьбы с вредителями и в других отраслях народного хозяйства.

Задача. Какая масса железа может быть получена при действии на 96 г оксида железа(III) избытка оксида углерода(II), если выход реакции составляет 80% от теоретически возможного? (Cлайд 6)

Закончите предложения или дайте ответ на поставленный вопрос.

Мне больше всего понравилось…

Сегодня я узнал…

Домашнее задание: учебник Габриелян О. С. п.14 (стр. 65-67); упр. 5,6 письменно (Cлайд 7).

Железо (Fe) (определение уровня в крови)

Уровень сывороточного железа в крови

Железо — один из важнейших микроэлементов организма человека, входящий в состав гемоглобина (до 70%), мышечного белка миоглобина, ряда ферментов, участвует в кроветворении и транспорте кислорода из легких в ткани. Является «незаменимым» компонентом и поступает в организм с пищей, всасывание его происходит в кишечнике. В плазме крови связывается с транспортным белком трансферрином, концентрация которого зависит от уровня железа. В организме депо железа находится в виде ферритина (комплекса железа с белком аполипопротеином), уровень которого в сыворотке показывает запасы железа. Дефицит железа приводит к развитию анемии, симптомы которой на начальном этапе проявляются такими неспецифическими повседневными признаками, как повышенная утомляемость, снижение способности к концентрации внимания, угнетение настроения, повышение чувствительности к холоду. На выраженных стадиях железодефицита появляются бледность и сухость кожных покровов или слизистых оболочек, ломкость ногтей и волос, «заеды» в уголках рта. Но чрезмерное поступление железа приводит к повышенному накоплению и поражению печени, сердца и поджелудочной железы.

Этот анализ входит в блоки:

Срок готовности анализов в экспресс-режиме (Cito)

Время сдачи Готовность
Будни Выходные
Клиника при Лаборатории ЦИР на Дубровке
08:00-17:00 09:00-17:00 1-2 часа
17:00-20:30 На следующий день, как сданный в 8:00
Марьино, Новокузнецкая, Войковская
08:00-12:00 09:00-12:00 3-5 часов
Бутово
08:00-12:00 09:00-12:00 до 16:00
Подольск
07:00-09:00 08:00-09:00 до 14:00
09:00-11:00 09:00-11:00 до 16:00

Для чего это нужно

Анализ крови на железо назначается при:

  • диагностике и дифференциальной диагностике анемий, оценке эффективности лечения железодефицитной анемии;
  • хронических инфекционных и системных воспалительных заболеваниях;
  • несбалансированном питании, синдроме мальабсорбции, гипо- и авитаминозах;
  • диагностике гемохроматоза;
  • отравлении железосодержащими препаратами.

Значение анализов

Норма железа в крови

Референсные интервалы могут различаться в разных лабораториях.

Мужчины старше 18 лет — 9-31 мкмоль/л.

Женщины старше 18 лет — 9-31 мкмоль/л, при беременности содержание в организме снижается.

Альтернативные единицы: мкг/дл, мг/л.Перевод единиц: мкг/дл х 0,179 ==> мкмоль/л или мг/л х 17,9 ==> мкмоль/л.

Причины снижения уровня железа в крови

Низкое железо в крови — частая причина обращения к терапевту. Такая ситуация может быть следствием увеличения потребности в железе, повышенных потерь, нарушения всасывания или малого поступления железа с пищей.

  • быстрый рост, беременность, роды, кормление.
  • из ЖКТ (язва, эрозии, дивертикулы, опухоль, варикозное расширение вен, геморрой);
  • из мочеполовой системы (кровотечения при менструациях, мочекаменная болезнь);
  • кровопотери в замкнутые полости с нарушением реутилизации железа (эндометриоз, легочный сидероз);
  • донорство.
  • синдром мальабсорбции;
  • резекция желудка, тонкой кишки;
  • хронический атрофический гастрит.

Недостаточное потребление железа с пищей

  • несбалансированное питание;
  • пожилой возраст;
  • вегетарианство.

Причины повышения уровня железа в крови

Повышение железа в крови — более редкая проблема, причинами которой могут быть:

  • гемолитические, гипо- и апластические анемии;
  • избыточное введение препаратов железа;
  • повторные гемотрансфузии;
  • B12- и фолиеводефицитные анемии;
  • свинцовая интоксикация;
  • заболевания печени (алкогольный гепатит, острый некроз печени);
  • острое отравление препаратами железа;
  • прием хлорамфеникола, оральных контрацептивов, эстрогенов.

Концентрация железа в сыворотке может изменяться в течение суток (максимальная концентрация в утренние часы) и в разные дни (у женщин снижен после менструации). Поэтому рекомендуется оценивать результаты сывороточного железа вместе с уровнем трансферрина, ферритина, НЖСС (ненасыщенная железосвязывающая способность), ОЖСС (общая железосвязывающая способность), процентом насыщения трансферрина железом.

Условия сдачи анализа

Кровь из вены, натощак (от 8 до 14 часов голода). Накануне избегать пищевых перегрузок. Рекомендуется отказаться от приема препаратов железа (или сдавать спустя 7 дней после последнего приема).

ЖЕЛЕЗО, Fe (а. iron; н. Eisen; ф. fer; и. hierro), — химический элемент VIII группы периодической системы элементов Менделеева, атомный номер 26, атомная масса 55,847. Природное железо состоит из 4 стабильных изотопов: 54 Fe (5,84%), 56 Fe (91,68%), 57 Fe (2,17%) и 58 Fe (0,31%). Получены радиоактивные изотопы 52 Fe, 53 Fe, 55 Fe, 59 Fe, 60 Fe. Железо известно с доисторических времён. Впервые человек, вероятно, познакомился с метеоритным железом, т.к. древнеегипетское название железа «бени-пет» означает небесное железо. В хеттских текстах встречается упоминание о железе как о металле, упавшем с неба.

Физические свойства железа

Железо — серебристо-серый пластичный металл. Кристаллические модификации а-, g- и d-Fe открыты в 1868 Д. К. Черновым. До f 1042К кристаллическая решётка объёмно-центрированная кубическая, параметр решётки а = 0,2 86645 нм — а-Fe, между t 1173 и 1673К — гранецентрированная, а = 0,3 637 нм — g-Fe, выше f 1673К — объёмно-центрированная, а = 0,2 925 нм — d-Fe, между f 1042 и 1173К – объёмно-центрированная, а = 0,2 895 нм — d-Fe (иногда называется бета — b). Модификации g- и d-Fe парамагнитны. Физические свойства железа зависят от содержания примесей. При общем содержании примесей менее 0,01% по массе — плотность (293,15К) 7,84•10 3 кг/м 3 ; tnл1536°С, энтальпия плавления 13,77 кДж/моль; t кипения 2880°С; энтальпия испарения 350,02 кДж/моль; коэффициент теплопроводности (298К) 74,04 Вт/м К; удельное электрическое сопротивление (293 К) 9,7•10 -8 Ом/м; температурный коэффициент электрического сопротивления (273-373 К) 6,51•10 -3 К -1 , относительное удлинение 45-55%; температурный коэффициент линейного расширения (293 К) 11,7•10 -6 К -1 , твёрдость по Бринеллю 350-450 МПа; модуль Юнга 190-210•10 3 МПа; модуль сдвига 8,4•10 -3 МПа; кратковременная прочность на разрыв 170-210 МПа, предел текучести 100 МПа; ударная вязкость 300 МПа; средняя удельная теплоёмкость (273-1273 К) 640,57 Дж/кг•К, молекулярный объём 7,093•10 -6 м3/моль.

Химические свойства железа

Степени окисления железа +2, +3, +1, +4, +6. Наиболее устойчивы соединения двух- и трёхвалентного железа. Химически чистое железо при нормальной температуре стойко к окислению на воздухе и в воде. При отсутствии влаги не реагирует заметно с кислородом, серой, бромом, хлором; во влажном воздухе окисляется, покрываясь ржавчиной FeO•nH2О. При нагревании в присутствии воды окисляется с образованием Fe3О4 (до 845К) или FeO (выше 845К) и выделением водорода. При нагревании в сухом воздухе при 473-573К покрывается тончайшей оксидной плёнкой, которая защищает металл от коррозии (технический метод защиты железа от коррозии — воронение). Реагируя при повышенных температурах и в присутствии воды с S, Р, Cl, N, Ti, образует галогениды, сульфиды, фосфиды, нитриды, титаниды железа. Хорошо растворяется в разбавленных кислотах и практически не растворяется в щелочах. При взаимодействии с концентрированными кислотами Н2SO4 и HNO3 покрывается защитной оксидной плёнкой. Склонно к образованию комплексных соединений. Закись железа FeO проявляет основные свойства, оксид Fe2О3 — амфотерен, обладает слабо выраженной кислотной функцией, реагирует с более основными окислами, образуя ферриты Fe2О3•nMeO, имеющие ферромагнитные свойства. Кислотные свойства выражены и у Fe +6 , существующего в виде ферратов, солей не выделенной в свободном состоянии железной кислоты. Водные растворы солей железа вследствие гидролиза имеют кислую реакцию. Водные растворы солей двухвалентного железа на воздухе неустойчивы, Fe 2+ окисляется до Fe 3+ . Растворимость углерода в а-Fe при комнатной температуре 2•10 -5 %, при t 1110К 0,02%; в g-F при t 1426К растворяется 2,11% углерода. Твёрдый раствор углерода в g-Fe называется аустенитом, а углерода в а-Fe — ферритом. При закалке аустенита образуется мартенсит, пересыщенный твёрдый раствор углерода. Сочетание закалки с нагревом до относительно низких температур позволяет придать стали требуемое сочетание твёрдости и пластичности.

Железо в природе

По содержанию в земной коре (4,65%) железо занимает 4-е место. Среди других породообразующих элементов имеет максимальный атмосферный вес. Железо — сидерофильный элемент. Ведущий элемент метеоритного вещества: в каменных метеоритах содержится 25, в железных — 90,85% по массе Fe. Космическая распространённость железа близка к его содержанию в фотосфере Солнца — 627 г/т. Содержание железа для Земли в целом выше, чем для земной коры (38,8%). Наиболее бедны железом верхние оболочки Земли: в атмосфере фактически не содержится железо (лишь в метеорной и земной пыли), в гидросфере — 1•10 -6 %, в почве — 3,8%, в растениях (золе) — 1,0%, в живом веществе — 1•10 -2 %. Распространённость железа в горных породах (% по массе): ультраосновные — 9,85; основные — 8,56; средние — 5,85; кислые — 2,70; щелочные — 3,60; осадочные — 3,33 (по А. П. Виноградову).

Неокисленное железо в виде теллурического (земного) или метеоритного встречается в природе редко. Известно свыше 300 минералов, содержащих железо: оксиды, сульфиды, силикаты, фосфаты, карбонаты и др. Важнейшие минералы железа: гематит Fe2О3 (70% Fe), магнетит Fe2О4 (72,4% Fe), гётит FeOOH (62,9% Fe), лепидокрокит FeO(OH) (62,9% Fe), лимонит — смесь гидрооксидов Fe с SiO2 и другими веществами (40-62% Fe), сидерит FeCO3 (48,2% Fe), ильменит FeTiO3 (36,8% Fe), шамозит (Fe 2+ Fe 3+ )3 AlSi3O10(OH)2(Fe, Mg)3•(О,OH)6 (34-42% FeO); вивианит Fe3(PO4)2•8Н2О(43,0% FeO), скородит Fe(AsO4)•2Н2О (34,6% Fe2О3), ярозит KFe3(SO4)2(OH)6 (47,9% Fe2О3) и др. Возможность отделения окисножелезных расплавов от силикатных — первопричина концентрации железа в магматическом процессе. В сульфидных магматических рудах железо — один из главных компонентов. Высокотемпературный контактово-метасоматический процесс приводит к формированию магнетитовых месторождений в скарнах. В переносе железа большая роль принадлежит хлоридным комплексам. В гидротермальном процессе повсеместно распространены сульфиды железа. В высокотемпературных гидротермальных жилах присутствуют магнетит, пирротин, халькопирит

Железо — единственный породообразующий элемент с переменной валентностью. Отношение оксидного железа к закисному устойчиво растёт с увеличением кремнекислотности расплавов. Ещё больший рост происходит в щелочных системах, где минерал, содержащий трёхвалентное железо — эгирин, (Na,Fe)Si2О6, становится породообразующим. В метаморфическом процессе железо, по-видимому, мало подвижно. Содержание железа в современных океанических осадках близко к содержаниям в древних глинистых породах и глинистых сланцах. Основные генетические типы месторождений и схемы обогащения смотреть в статье железные руды.

Получение железа

Чистое железо получают восстановлением из оксидов (железо пирофорное), электролизом водных растворов его солей (железо электролитическое), разложением пентакарбонила железа Fe(CO)5 при нагревании до t 250°С. Особо чистое железо (99,99%) получают с помощью зонной плавки. Технически чистое железо (около 0,16% примесей углерода, кремния, марганца, фосфора, серы и др.) выплавляют, окисляя компоненты чугуна в мартеновских сталеплавильных печах и в кислородных конверторах. Сварочное или кирпичное железо получают, окисляя примеси малоуглеродистой стали железным шлаком или путём восстановления руд твёрдым углеродом. Основную массу железа выплавляют в виде сталей (до 2% углерода) или чугунов (свыше 2% углерода).

Применение железа

Железоуглеродистые сплавы — основа конструкции материалов, применяющихся во всех отраслях промышленности. Техническое железо — материал для сердечников электромагнитов и якорей электромашин, пластин аккумуляторов. Железный порошок в больших количествах применяется при сварке. Оксиды железа — минеральные краски; ферромагнитные Fe3О4, g-Fe используются для производства магнитных материалов. Сульфат FeSO4•7Н2О применяется в текстильной промышленности, в производстве берлинской лазури, чернил; FeSO4 — коагулянт для очистки воды. Железо используется также в полиграфии, медицине (как антианемическое средство); искусственные радиоактивные изотопы железа — индикаторы при исследовании химико-технологических и биологических процессов.

Железо (Fe, Ferrum)

История железа

Уже в IV тысячелетии до н.э. человечество владело изделиями из железа. Цивилизации древнего Шумера и Древнего Египта знали сплав железа и никеля (метеоритное железо, которое не добывали, а находили на поверхности земли). Именно из такого металла изготовлены известные украшения, найденные в египетских гробницах, а также кинжал правителя шумерского города Уда.

Получать железо путём выплавления его из железных руд научились намного позже, во время переселения арийцев в Азию. Способы получения железа были разнообразными, чаще всего руда прокаливалась с веществами, содержащими углерод, в результате чего получалась пластичная масса, из которой можно было изготовить изделия, а затем охладить их в ледяной воде до небывалой твёрдости.

В древние времена изделия из железа часто покрывались солидным слоем золота, ведь железо ценилось намного дороже, чем мягкое золото.

Общая характеристика железа

Железо (Fe) является вторым по распространённости в земной коре металлов, это элемент VII группы IV периода периодической системы химических элементов Д.И. Менделеева. Имеет атомный номер 26.

Нахождение в природе

Железо занимает 4-е место среди всех химических элементов по распространению в земной коре (среди металлов уступает только алюминию). Металл распространён в большом количестве руд и минералов, в основных породах, морской воде.

На геологической карте мира основные запасы железной руды отмечены в Бразилии, США, Канаде, Австралии, Индии, Украине, России.

Физические и химические свойства

Железо – пластичный металл серо-серебристого цвета, обладает свойствами магнита, чтобы повысить его твёрдость, необходимы примеси (как правило – углерод). Подвержен процессам коррозии и ржавчины.

Продукты питания богатые железом

Полезные свойства железа и его влияние на организм

Железо играет важную роль в процессе образования гемоглобина в крови, имеет свойства защищать организм от бактерий (без него невозможно образование иммунитета), принимает участие в синтезе гормонов щитовидной железы (calorizator). Для того, чтобы поступающие в организм витамины группы В работали в полную силу, также необходимо присутствие железа.

Взаимодействие с другими

Медь, кобальт, марганец и витамин С необходимы для усвоения железа. Железо необходимо для правильного метаболизма витаминов группы В. Железо способствует росту, увеличивает сопротивляемость заболеваниям, предупреждает усталость.

О суточной потребности организма в железе, о том, как влияет дефицит железа на организм человека и о его влиянии на стройность, читайте в статье «Роль железа в нашем организме».

Общие сведения

Железо (Fe) – 26-й элемент, металл, расположен в побочной подгруппе VIII группы четвертого периода периодической системы. Обозначается символом Fe (от лат. ferrum). Железо довольно часто встречается в земной коре. Оно занимает второе место по распространенности среди металлов (после алюминия) и четвертое – среди элементов (после кислорода, кремния и алюминия).

Биохимические свойства
В организме железо находится в степенях окисления +2 и +3. Способность легко переходить из одной степени окисления в другую является главным физиологическим свойством железа.
У железа есть две биодоступные формы: порфириновый координационный комплекс (гем) и растворимые соли.

Метаболизм
Обмен железа в организме включает следующее процессы: всасывание в кишечнике, транспорт к тканям, утилизацию и депонирование, экскрецию и потери.
Всасывание железа происходит преимущественно в начальной части тонкого кишечника. Чем больше дефицит железа в организме, тем интенсивнее его всасывание в кишечнике. При анемиях в процессе всасывания участвуют все отделы тонкой кишки. Железо в степени окисления +2 всасывается лучше, чем в степени +3. Из эритроцитов в кровь железо поступает путем активного транспорта и, в меньшей степени, путем диффузии. Далее железо связывается с белком-носителем – трансферрином, который обеспечивает транспорт железа к гемопоэтическим тканям и местам депонирования железа. Трансферрин синтезируется в печени. В норме используется только около 30 % железосвязывающей способности трансферрина плазмы крови. В депонировании железа в организме основное значение имеют ферритин и гемосидерин. Организм может регулировать поступление железа из пищи (усвояемость железа может возрастать на 200 %) и не контролирует его расходование.

Основные источники

Таблица 1. Содержание железа в продуктах питания

Продукт

Содержание железа,

Гречка, крупа «геркулес»

Самые лучшие источники железа – продукты животного происхождения. В мясе железо содержится в легкоусвояемой гемовой форме. В печени и рыбе железо находится в менее доступной ферритиновой форме. В крупах, овощах и фруктах содержится много железа, но оно малодоступно. По количеству поступающего с пищей железа нельзя судить об общем количестве его поглощения и усвоения.

Функции в организме

Биологическое значение железа основано на его способности обратимо окисляться и восстанавливаться кислородом. Это свойство реализуется, когда железо входит в состав гема. Гем представляет собой простетическую часть молекулы гемоглобина и миоглобина. Кроме того, гем является составной частью тканевых окислительных ферментов – цитохромов, каталазы и пероксидазы. Железо – предпоследний акцептор электронов в электронно-транспортной цепи, передающий электрон непосредственно на кислород. Опосредованно железо участвует во всех без исключения аэробных окислительных реакциях организма.

Нормы потребления

Таблица 2. Нормы потребления железа

Возраст

Нормы физиологической потребности, мг/сут

Установленные уровни потребности,

Верхний допустимый уровень потребления, мг/сут

В химическом отношении железо, кобальт и никель относятся к металлам средней активности. В электрохимическом ряду напряжений металлов они располагаются левее водорода, между цинком и оловом. Чистые металлы при комнатной температуре довольно устойчивы, их активность сильно увеличивается при нагревании, особенно если они находятся в мелкодисперсном состоянии. Наличие примесей значительно снижает устойчивость металлов.

    Взаимодействие с неметаллами

При нагревании на воздухе выше 200 °С железо взаимодействует с кислородом, образуя оксиды нестехиометрического состава FexO, мелкодисперсное железо сгорает с образованием смешанного оксида железа (II, III):

Кобальт и никель реагируют с кислородом при более высоких температурах, образуя в основном оксиды двухвалентных элементов, имеющие переменный состав в зависимости от условий получения:

С галогенами металлы реагируют, образуя галогениды :

Металлы довольно устойчивы к действию фтора, никель не разрушается фтором даже при температуре красного каления.

При взаимодействии с азотом при невысокой температуре железо, кобальт и никель образуют нитриды различного состава, например:

Взаимодействие с серой экзотермично и начинается при слабом нагревании, в результате образуются нестехиометрические соединения, которые имеют состав, близкий к ЭS:

С водородом металлы триады железа не образуют стехиометрических соединений, но они поглощают водород в значительных количествах.

С углеродом, бором, кремнием, фосфором также при нагревании образуют соединения нестехиометрического состава, например:

Взаимодействие с водой

В воде в присутствии кислорода железо медленно окисляется кислородом воздуха (корродирует):

При температуре 700–900 °С раскаленное железо реагирует с водяным паром:

Кобальт и никель с водой не взаимодействуют.

Взаимодействие с кислотами

Железо реагирует с разбавленными растворами соляной и серной кислот, образуя соли железа (II):

с разбавленной азотной кислотой образует нитрат железа (III) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты, например:

При обычных условиях концентрированные (до 70 мас. %) серная и азотная кислоты пассивируют железо. При нагревании возможно взаимодействие с образованием солей железа (III):

По отношению к кислотам кобальт и никель устойчивее железа, медленно реагируют с неокисляющими кислотами с образованием солей кобальта (II) и никеля (II) и водорода. С разбавленной азотной кислотой образуют нитраты кобальта (II) и никеля (II) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты:

При обычных условиях концентрированные серная и азотная кислоты пассивируют кобальт и никель, хотя в меньшей степени, чем железо. При нагревании возможно взаимодействие с образованием солей железа двухвалентных металлов:

Взаимодействие со щелочами

Разбавленные растворы щелочей на металлы триады железа не действуют. Возможно только взаимодействие железа с щелочными расплавами сильных окислителей:

Для кобальта и никеля взаимодействие с расплавами щелочей не характерно.

Железо, кобальт и никель вытесняют металлы, которые расположены правее в электрохимическом ряду напряжений их растворов солей:

Для металлов триады железа характерно образование карбонилов, в которых железо, кобальт и никель имеют степень окисления, равную 0. Карбонилы железа и никеля получаются при обычном давлении и температуре 20–60 °С:

Карбонилы никеля образуются при давлении 2·10 7 – 3·10 7 Па и температуре 150–200 °С:

Ссылка на основную публикацию